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ABSTRACT
Quantum computing is an emerging field of high interest. Many

companies have started to work on developing more powerful and

stable quantum computers. However, developers still struggle to

master the art of programming with a quantum computer. One of

the major challenges faced is the integration of quantum parts of a

system with the classical one. This paper proposes a novel devel-

opment model called Quantum-Algorithms-as-a-Service (QAaaS).

This new model aims to allow developers to abstract the quan-

tum components away from the design of the software they are

building. The model leverages Software-as-a-Service and Function-

as-a-Service to support multiple quantum cloud providers and run

their algorithms regardless of the underlying hardware.
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1 INTRODUCTION
Quantum computing technology is now a reality [11, 14], making

the 21st century the “quantum era” [19]. This technology intro-

duces new concepts such as superposition and entanglement. The
former refers to quantum objects that may assume different states

simultaneously, while the latter refers to quantum objects that may
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be deeply connected without direct physical interaction. These con-

cepts promise to revolutionize program computation [17], even lead-

ing to the so-called quantum supremacy [3], when a programmable

quantum device will solve problems that no classical computer can

solve in feasible time. As a result, several major business players,

such as IBM and Google, are yearly investing hundreds of millions

of dollars to develop hardware and software solutions to support

quantum program execution.
1

Developing large-scale quantum software seems to be still far

from reality. However, a new scientific discipline was born to enable

developers to design quantum programs with the same confidence

as classical programs. This new discipline is called quantum software
engineering (QSE) [18] and aims to foster the application of tradi-

tional software engineering methods to quantum programming. A

key point of QSE is the coexistence of traditional and quantum sys-

tems, which build the so-called hybrid systems [18, 24]. However,

this does not come without issues; thus, researchers investigate

quantum developers’ challenges when dealing with these programs.

To this aim, Khan et al. [13] conducted a systematic literature

review on software architecture for quantum computing systems.

They found that the most common quantum software architec-

tural patterns are layered and pipe-and-filter patterns. Nevertheless,

these patterns are general-purpose or classic patterns that can be

applied to any software system. For this purpose, more research ef-

fort is needed to develop specialized architectural patterns that can

better exploit quantum characteristics, e.g., superposition and en-
tanglement. Weigold et al. [22] depicted a set of patterns that can be

used to encode classical data into quantum states, which was later

extended to provide a broad set of techniques [21]. Gill et al. [9] de-
picted a series of issues in running quantum algorithms efficiently

and effectively due to software and hardware limitations. More

recently, De Stefano et al. [5] defined a taxonomy of challenges re-

lated to quantum programming by surveying quantum computing

practitioners. The challenges they identify are related to different

aspects of quantum programming, spanning from learning-related

to community-related ones. A particular challenge that emerged

from their taxonomy is related to the “software infrastructure”. De-
velopers complained about rapidly changing API, a severe vendor

lock-in, difficulty integrating classical parts with quantum parts of

the system, and other issues related to the execution environment.

1
Boston Consulting Group report: https://www.bcg.com/publications/2021/building-
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Figure 1: Activity Diagram depicting the high-level process carried out by our model. The API Gateway receives the request,
which is forwarded to the Orchestrator. The Orchestrator is in charge of analyzing the desired algorithm and the possible
provider to run the algorithm on. Then, the meta-model is translated and sent to the selected provider to run the computation.
The result is sent to the Gateway, which fulfills the request.

Researchers have already started proposing possible solutions to

overcome the integration issues between traditional and quantum

components. Weder et al. [20] introduced the Quantum Modeling

Extension (QUANTME) to facilitate the representation of quantum

circuit invocations in workflows and their orchestration with clas-

sical applications. They demonstrated how to make QUANTME

workflow models executable on different workflow engines by de-

veloping a prototype for three different quantum algorithms and

evaluating the achieved reuse and degree of simplification. Zapata

Computing [23] developed a commercial solution called Orquestra

that is interoperable across all tiers of the stack by running on

all major cloud platforms and quantum devices. It separates the

structure of a workflow from the details of underlying activities,

allowing the user to choose from various techniques for completing

a task (quantum or classical).

Kumara et al. [15] proposed Quantum Service-Oriented Com-

puting (QSOC). This model-driven methodology enables enterprise

DevOps teams to compose, configure, and run enterprise appli-

cations without intimate knowledge of the underlying quantum

infrastructure. It also advocates knowledge reuse, separation of

concerns, resource optimization, and mixed quantum- and conven-

tional QSOC applications.

Moguel et al. [16] proposed a case study highlighting the rough

edges and limitations of integrating classical-quantum hybrid sys-

tems using service-oriented computing. The conclusion of the study

allows us to point out areas where research efforts should be di-

rected to achieve effective quantum service-oriented computing.

Similarly, Gomes et al. [10] proposed a collection of ready-made

quantum data structures and algorithms to be used by developers.

Their work focused on the verification and validation steps by

devising techniques to cope with these challenging practices.

Based on this idea, in this paper, we face the integration issues at a

higher level of granularity by proposing a novel development model

called Quantum-Algorithms-as-a-Service (QAaaS). This new model

aims to allow developers to abstract the quantum components away

from the design of the software they are building. It will also allow

developers to use the desired quantum algorithms without taking

care of the execution environment or the underlying providers by

leveraging Software-as-a-Service (SaaS) and Function-as-a-Service

(FaaS). Saas is a software licensing and delivery model in which

software is licensed on a subscription basis and is centrally hosted.

In contrast, FaaS is a category of cloud computing services that

provides a platform allowing customers to develop, run, andmanage

application functionalities without the complexity of building and

maintaining the infrastructure.

The main contributions of this paper are: (i) the proposal of a

novel development method for hybrid quantum applications and (ii)

a research roadmap to develop and validate this novel methodology.

2 QUANTUM PROVIDERS FACE TO FACE
Many major software companies have started developing and re-

searching quantum computers, which are publicly accessible. Some

of them, e.g., Google, IBM, and Microsoft, have already provided

their quantum ecosystem and released their languages or SDKs;

namely, Qiskit [2] (IBM), Cirq [6] (Google), and Q♯ [1] (Microsoft).

All these technologies support the universal gate model of quan-

tum computing to create low-level quantum circuits, compiling

them, and executing them on quantum machines [4, 8]. These tech-

nologies have different characteristics that could bring specific

advantages or disadvantages in terms of syntax, requirements, and

computing capabilities. Beyond big popular companies, startups

emerged to compete by providing valid alternatives, e.g., Rigetti

Computing.
2
Besides the technologies supporting the universal

2
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quantum gate model, some providers support alternative technolo-

gies, such as the quantum annealing provided by D-Wave [12]. This

model is optimized to combinatorial optimization models, where

the search space is discrete with many local minima.

This preliminary evaluation among the available vendors is the

first step to defining our proposal, which can bring quantum pro-

gramming to a higher level of abstraction.

3 TOWARDS
QUANTUM-ALGORITHMS-AS-A-SERVICE

Recent studies have shown that developers of quantum applications

often struggle with issues related to the software infrastructure,

mainly involving the integration between quantum and traditional

components. Such issues are caused by several factors, such as

the different programming paradigms and languages, the mapping

of input between classical and quantum parts, and the very high

vendor lock-in that characterizes quantum applications. Further-

more, it has also been shown that quantum frameworks API are in

a constant change [5], thus making developers break their code too

often.

Based on the idea of Kumara et al. [15], this paper presents a
development strategy to overcome all these issues coined Quantum-
Algorithms-as-a-Service (QAaaS), recalling the “Everything as a ser-
vice" models that are becoming more and more widespread in cloud

development [7]. This strategy will allow developers to write their

quantum programs and integrate them into their systems without

worrying about the technical details of the quantum providers’

platforms. Figure 1 depicts the high-level characteristics of the pro-

posed model in the form of an activity diagram. It consists of four

main components, i.e., the API Gateway, the orchestrator, the meta-

model translator, and the quantum provider. The API Gateway is a

classical API facade that will be accessible through traditional API

technologies, like REST, GraphQL, or RPC. External components

can interact with the API Gateway to execute quantum algorithms,

which will be hosted on the system in the form of a meta-model, i.e.,

a framework-agnostic model that describes the quantum algorithm

to be executed. Then, based on the specific characteristics of the

meta-model and the capabilities of the providers to be executed,

the orchestrator will forward the request to a specific quantum

provider. To this aim, it will first interact with the meta-model

translator to obtain a representation of the algorithm compatible

with the selected provider. Then, the translated algorithm will be

passed to the quantum provider in charge of the execution. Once

completed the computation, the resulting output will be returned

to the API Gateway that will fulfill the request.

The selection of the best suitable platform does not come without

issues. For instance, IBM provides a mechanism to select the least

busy machine. However, this cannot be the sole selection criteria.

To be executed, the circuit must be transpiled to match the topology

and the supported gate set of the selected machine, which requires

converting unsupported gates with a series of equivalent gates or

adding circuit parts to enable the communication among qubits that

are not physically connected. Therefore, circuits will grow in width

(i.e., the number of qubits) or depth (i.e., the maximum number of

gates on a single qubit), causing performance issues. Choosing the

machines whose transpilation requires the minimum alteration of

the original circuit could be an available strategy.

Even costs should be considered as selection criteria. Tradition-

ally, in a FaaS context, running a function for a long time costs more.

Similarly, in an IaaS context, the best-equipped machine costs more.

Thus, choosing the best trade-off between execution time and costs

can be another selection criterion.

4 ROADMAP
This section presents a roadmap to guide our future research toward

designing and implementing our proposed model.

As a first step, we aim to survey the quantum providers to collect

more information about using APIs and frameworks. This step

will be necessary to understand how to develop the input mapping

strategies. For instance, we already know some standard differences

among the endianness of the qubits or the encoding of the rotation

angles on some gates: Qiskit puts the least significant qubit in

position zero, while other vendors use other standards. This step is

necessary to create an encoding strategy to be applied whenever

each provider is selected.

After defining a taxonomy of the available quantum vendors

with their characteristics and capabilities, the next step will focus

on the meta-model translator component. First, we plan to investi-

gate the adaption of currently available open-source solutions. We

have already explored some feasible alternatives, such as Quantum
Programming Studio (QPS).3 This open-source project has received
funding from Rigetti Computing and other private sources. It pro-

vides users with a web-based platform to build quantum algorithms

and retrieve results by simulating them directly in the browser or

running them on real quantum computers. The circuits can be ex-

ported into various quantum programming languages/frameworks

and run on various quantum simulators and computers. To this

extent, the core of this open-source application could be forked and

integrated into the proposed model, adapting the code to accept

API calls instead of interacting with a web GUI.

Applications in Rigetti are written in JavaScript, while most

quantum libraries are developed in Python. Therefore, we need to

understand whether re-using the code of Quantum Programming

studio and making it interact with the Python code in alternative

ways other than function calls or translating it into Python. Suppose

we do not find a valid candidate; in that case, we will design and

develop a solution to translate any input meta-model to allow for its

execution on all the selected quantum providers’ platforms. We will

adopt already available frameworks to implement the API Gateway.

In this case, since the vendors mainly provide libraries in Python,

we could develop our API Gateway in the same language, and thus

we can rely on libraries e.g., Flask or Django.

Finally, once defined how to design and develop each compo-

nent, we plan to provide a prototype and validate it using a case

study. This study will assess whether the components are correctly

developed and whether the quantum algorithms are correctly exe-

cuted. Then, other non-functional requirements will be explored,

e.g., response time, security, and reliability.

Achieving this research agenda will require facing some other is-

sues to be solved, which broadly affect all the proposed framework.

3
Quantum Programming Studio: https://quantum-circuit.com/
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For instance, as pointed out by De Stefano et al. [5], changing
APIs and vendor lock-in are challenges that affect all quantum

applications. To some extent, the proposed framework aims to

solve both end-user problems, which can run their quantum code

regardless of vendors and specific technologies. The problemwill be

shifted to a higher level of abstraction where developers will avoid

strict vendor specifications and cope with a much more abstract

and high-level interface that will be easier to manage.

Testing is an open challenges in quantum programming [5, 24];

therefore, developing such a framework will require testing mech-

anisms. On the one hand, since the framework will provide API

endpoints to the end users, it will be possible to send error codes to

verify whether the executions are successful. On the other hand, we

will adopt classical testing practices to test the integration among

the various platforms.

5 CONCLUSION
This article presents a novel development model coined Quantum-
Algorithms-as-a-Service (QAaaS) aiming to overcome the integra-

tion issues of traditional and quantum components. The proposed

model provides quantum algorithms as services so developers can

access them via traditional API invocations without knowing tech-

nical implementation details. We also include a research roadmap

to allow the design and implementation of a working prototype

and its evaluation.

The realization of this research agenda will represent only a first

step towards abstracting quantum computing out of the limitations

imposed by hardware providers. In the future, it will be possible

to realize a library to facilitate the usage of quantum computing

technologies.
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