
TowardsQuantum-Algorithms-as-a-Service
Manuel De Stefano

madestefano@unisa.it

SeSa Lab - University of Salerno

Fisciano, Italy

Dario Di Nucci

ddinucci@unisa.it

SeSa Lab - University of Salerno

Fisciano, Italy

Fabio Palomba

fplaomba@unisa.it

SeSa Lab - University of Salerno

Fisciano, Italy

Davide Taibi

davide.taibi@oulu.fi

University of Oulu

Tampere University

Tampere, Finland

Andrea De Lucia

adelucia@unisa.it

SeSa Lab - University of Salerno

Fisciano, Italy

ABSTRACT
Quantum computing is an emerging field of high interest. Many

companies have started to work on developing more powerful and

stable quantum computers. However, developers still struggle to

master the art of programming with a quantum computer. One of

the major challenges faced is the integration of quantum parts of a

system with the classical one. This paper proposes a novel devel-

opment model called Quantum-Algorithms-as-a-Service (QAaaS).

This new model aims to allow developers to abstract the quan-

tum components away from the design of the software they are

building. The model leverages Software-as-a-Service and Function-

as-a-Service to support multiple quantum cloud providers and run

their algorithms regardless of the underlying hardware.

CCS CONCEPTS
• Computer systems organization→ Quantum computing.

KEYWORDS
Quantum Software Engineering; QaaS; Quantum Computing; XaaS

ACM Reference Format:
Manuel De Stefano, Dario Di Nucci, Fabio Palomba, Davide Taibi, and An-

drea De Lucia. 2022. Towards Quantum-Algorithms-as-a-Service. In Pro-
ceedings of the 1st International Workshop on Quantum Programming for
Software Engineering (QP4SE ’22), November 18, 2022, Singapore, Singapore.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3549036.3562056

1 INTRODUCTION
Quantum computing technology is now a reality [11, 14], making

the 21st century the “quantum era” [19]. This technology intro-

duces new concepts such as superposition and entanglement. The
former refers to quantum objects that may assume different states

simultaneously, while the latter refers to quantum objects that may

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

QP4SE ’22, November 18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9458-1/22/11. . . $15.00

https://doi.org/10.1145/3549036.3562056

be deeply connected without direct physical interaction. These con-

cepts promise to revolutionize program computation [17], even lead-

ing to the so-called quantum supremacy [3], when a programmable

quantum device will solve problems that no classical computer can

solve in feasible time. As a result, several major business players,

such as IBM and Google, are yearly investing hundreds of millions

of dollars to develop hardware and software solutions to support

quantum program execution.
1

Developing large-scale quantum software seems to be still far

from reality. However, a new scientific discipline was born to enable

developers to design quantum programs with the same confidence

as classical programs. This new discipline is called quantum software
engineering (QSE) [18] and aims to foster the application of tradi-

tional software engineering methods to quantum programming. A

key point of QSE is the coexistence of traditional and quantum sys-

tems, which build the so-called hybrid systems [18, 24]. However,

this does not come without issues; thus, researchers investigate

quantum developers’ challenges when dealing with these programs.

To this aim, Khan et al. [13] conducted a systematic literature

review on software architecture for quantum computing systems.

They found that the most common quantum software architec-

tural patterns are layered and pipe-and-filter patterns. Nevertheless,

these patterns are general-purpose or classic patterns that can be

applied to any software system. For this purpose, more research ef-

fort is needed to develop specialized architectural patterns that can

better exploit quantum characteristics, e.g., superposition and en-
tanglement. Weigold et al. [22] depicted a set of patterns that can be

used to encode classical data into quantum states, which was later

extended to provide a broad set of techniques [21]. Gill et al. [9] de-
picted a series of issues in running quantum algorithms efficiently

and effectively due to software and hardware limitations. More

recently, De Stefano et al. [5] defined a taxonomy of challenges re-

lated to quantum programming by surveying quantum computing

practitioners. The challenges they identify are related to different

aspects of quantum programming, spanning from learning-related

to community-related ones. A particular challenge that emerged

from their taxonomy is related to the “software infrastructure”. De-
velopers complained about rapidly changing API, a severe vendor

lock-in, difficulty integrating classical parts with quantum parts of

the system, and other issues related to the execution environment.

1
Boston Consulting Group report: https://www.bcg.com/publications/2021/building-

quantum-advantage.

https://doi.org/10.1145/3549036.3562056
https://doi.org/10.1145/3549036.3562056
https://www.bcg.com/publications/2021/building-quantum-advantage
https://www.bcg.com/publications/2021/building-quantum-advantage

QP4SE ’22, November 18, 2022, Singapore, Singapore Manuel De Stefano, Dario Di Nucci, Fabio Palomba, Davide Taibi, and Andrea De Lucia

Figure 1: Activity Diagram depicting the high-level process carried out by our model. The API Gateway receives the request,
which is forwarded to the Orchestrator. The Orchestrator is in charge of analyzing the desired algorithm and the possible
provider to run the algorithm on. Then, the meta-model is translated and sent to the selected provider to run the computation.
The result is sent to the Gateway, which fulfills the request.

Researchers have already started proposing possible solutions to

overcome the integration issues between traditional and quantum

components. Weder et al. [20] introduced the Quantum Modeling

Extension (QUANTME) to facilitate the representation of quantum

circuit invocations in workflows and their orchestration with clas-

sical applications. They demonstrated how to make QUANTME

workflow models executable on different workflow engines by de-

veloping a prototype for three different quantum algorithms and

evaluating the achieved reuse and degree of simplification. Zapata

Computing [23] developed a commercial solution called Orquestra

that is interoperable across all tiers of the stack by running on

all major cloud platforms and quantum devices. It separates the

structure of a workflow from the details of underlying activities,

allowing the user to choose from various techniques for completing

a task (quantum or classical).

Kumara et al. [15] proposed Quantum Service-Oriented Com-

puting (QSOC). This model-driven methodology enables enterprise

DevOps teams to compose, configure, and run enterprise appli-

cations without intimate knowledge of the underlying quantum

infrastructure. It also advocates knowledge reuse, separation of

concerns, resource optimization, and mixed quantum- and conven-

tional QSOC applications.

Moguel et al. [16] proposed a case study highlighting the rough

edges and limitations of integrating classical-quantum hybrid sys-

tems using service-oriented computing. The conclusion of the study

allows us to point out areas where research efforts should be di-

rected to achieve effective quantum service-oriented computing.

Similarly, Gomes et al. [10] proposed a collection of ready-made

quantum data structures and algorithms to be used by developers.

Their work focused on the verification and validation steps by

devising techniques to cope with these challenging practices.

Based on this idea, in this paper, we face the integration issues at a

higher level of granularity by proposing a novel development model

called Quantum-Algorithms-as-a-Service (QAaaS). This new model

aims to allow developers to abstract the quantum components away

from the design of the software they are building. It will also allow

developers to use the desired quantum algorithms without taking

care of the execution environment or the underlying providers by

leveraging Software-as-a-Service (SaaS) and Function-as-a-Service

(FaaS). Saas is a software licensing and delivery model in which

software is licensed on a subscription basis and is centrally hosted.

In contrast, FaaS is a category of cloud computing services that

provides a platform allowing customers to develop, run, andmanage

application functionalities without the complexity of building and

maintaining the infrastructure.

The main contributions of this paper are: (i) the proposal of a

novel development method for hybrid quantum applications and (ii)

a research roadmap to develop and validate this novel methodology.

2 QUANTUM PROVIDERS FACE TO FACE
Many major software companies have started developing and re-

searching quantum computers, which are publicly accessible. Some

of them, e.g., Google, IBM, and Microsoft, have already provided

their quantum ecosystem and released their languages or SDKs;

namely, Qiskit [2] (IBM), Cirq [6] (Google), and Q♯ [1] (Microsoft).

All these technologies support the universal gate model of quan-

tum computing to create low-level quantum circuits, compiling

them, and executing them on quantum machines [4, 8]. These tech-

nologies have different characteristics that could bring specific

advantages or disadvantages in terms of syntax, requirements, and

computing capabilities. Beyond big popular companies, startups

emerged to compete by providing valid alternatives, e.g., Rigetti

Computing.
2
Besides the technologies supporting the universal

2
https://www.rigetti.com/about-rigetti-computing

TowardsQuantum-Algorithms-as-a-Service QP4SE ’22, November 18, 2022, Singapore, Singapore

quantum gate model, some providers support alternative technolo-

gies, such as the quantum annealing provided by D-Wave [12]. This

model is optimized to combinatorial optimization models, where

the search space is discrete with many local minima.

This preliminary evaluation among the available vendors is the

first step to defining our proposal, which can bring quantum pro-

gramming to a higher level of abstraction.

3 TOWARDS
QUANTUM-ALGORITHMS-AS-A-SERVICE

Recent studies have shown that developers of quantum applications

often struggle with issues related to the software infrastructure,

mainly involving the integration between quantum and traditional

components. Such issues are caused by several factors, such as

the different programming paradigms and languages, the mapping

of input between classical and quantum parts, and the very high

vendor lock-in that characterizes quantum applications. Further-

more, it has also been shown that quantum frameworks API are in

a constant change [5], thus making developers break their code too

often.

Based on the idea of Kumara et al. [15], this paper presents a
development strategy to overcome all these issues coined Quantum-
Algorithms-as-a-Service (QAaaS), recalling the “Everything as a ser-
vice" models that are becoming more and more widespread in cloud

development [7]. This strategy will allow developers to write their

quantum programs and integrate them into their systems without

worrying about the technical details of the quantum providers’

platforms. Figure 1 depicts the high-level characteristics of the pro-

posed model in the form of an activity diagram. It consists of four

main components, i.e., the API Gateway, the orchestrator, the meta-

model translator, and the quantum provider. The API Gateway is a

classical API facade that will be accessible through traditional API

technologies, like REST, GraphQL, or RPC. External components

can interact with the API Gateway to execute quantum algorithms,

which will be hosted on the system in the form of a meta-model, i.e.,

a framework-agnostic model that describes the quantum algorithm

to be executed. Then, based on the specific characteristics of the

meta-model and the capabilities of the providers to be executed,

the orchestrator will forward the request to a specific quantum

provider. To this aim, it will first interact with the meta-model

translator to obtain a representation of the algorithm compatible

with the selected provider. Then, the translated algorithm will be

passed to the quantum provider in charge of the execution. Once

completed the computation, the resulting output will be returned

to the API Gateway that will fulfill the request.

The selection of the best suitable platform does not come without

issues. For instance, IBM provides a mechanism to select the least

busy machine. However, this cannot be the sole selection criteria.

To be executed, the circuit must be transpiled to match the topology

and the supported gate set of the selected machine, which requires

converting unsupported gates with a series of equivalent gates or

adding circuit parts to enable the communication among qubits that

are not physically connected. Therefore, circuits will grow in width

(i.e., the number of qubits) or depth (i.e., the maximum number of

gates on a single qubit), causing performance issues. Choosing the

machines whose transpilation requires the minimum alteration of

the original circuit could be an available strategy.

Even costs should be considered as selection criteria. Tradition-

ally, in a FaaS context, running a function for a long time costs more.

Similarly, in an IaaS context, the best-equipped machine costs more.

Thus, choosing the best trade-off between execution time and costs

can be another selection criterion.

4 ROADMAP
This section presents a roadmap to guide our future research toward

designing and implementing our proposed model.

As a first step, we aim to survey the quantum providers to collect

more information about using APIs and frameworks. This step

will be necessary to understand how to develop the input mapping

strategies. For instance, we already know some standard differences

among the endianness of the qubits or the encoding of the rotation

angles on some gates: Qiskit puts the least significant qubit in

position zero, while other vendors use other standards. This step is

necessary to create an encoding strategy to be applied whenever

each provider is selected.

After defining a taxonomy of the available quantum vendors

with their characteristics and capabilities, the next step will focus

on the meta-model translator component. First, we plan to investi-

gate the adaption of currently available open-source solutions. We

have already explored some feasible alternatives, such as Quantum
Programming Studio (QPS).3 This open-source project has received
funding from Rigetti Computing and other private sources. It pro-

vides users with a web-based platform to build quantum algorithms

and retrieve results by simulating them directly in the browser or

running them on real quantum computers. The circuits can be ex-

ported into various quantum programming languages/frameworks

and run on various quantum simulators and computers. To this

extent, the core of this open-source application could be forked and

integrated into the proposed model, adapting the code to accept

API calls instead of interacting with a web GUI.

Applications in Rigetti are written in JavaScript, while most

quantum libraries are developed in Python. Therefore, we need to

understand whether re-using the code of Quantum Programming

studio and making it interact with the Python code in alternative

ways other than function calls or translating it into Python. Suppose

we do not find a valid candidate; in that case, we will design and

develop a solution to translate any input meta-model to allow for its

execution on all the selected quantum providers’ platforms. We will

adopt already available frameworks to implement the API Gateway.

In this case, since the vendors mainly provide libraries in Python,

we could develop our API Gateway in the same language, and thus

we can rely on libraries e.g., Flask or Django.

Finally, once defined how to design and develop each compo-

nent, we plan to provide a prototype and validate it using a case

study. This study will assess whether the components are correctly

developed and whether the quantum algorithms are correctly exe-

cuted. Then, other non-functional requirements will be explored,

e.g., response time, security, and reliability.

Achieving this research agenda will require facing some other is-

sues to be solved, which broadly affect all the proposed framework.

3
Quantum Programming Studio: https://quantum-circuit.com/

https://quantum-circuit.com/

QP4SE ’22, November 18, 2022, Singapore, Singapore Manuel De Stefano, Dario Di Nucci, Fabio Palomba, Davide Taibi, and Andrea De Lucia

For instance, as pointed out by De Stefano et al. [5], changing
APIs and vendor lock-in are challenges that affect all quantum

applications. To some extent, the proposed framework aims to

solve both end-user problems, which can run their quantum code

regardless of vendors and specific technologies. The problemwill be

shifted to a higher level of abstraction where developers will avoid

strict vendor specifications and cope with a much more abstract

and high-level interface that will be easier to manage.

Testing is an open challenges in quantum programming [5, 24];

therefore, developing such a framework will require testing mech-

anisms. On the one hand, since the framework will provide API

endpoints to the end users, it will be possible to send error codes to

verify whether the executions are successful. On the other hand, we

will adopt classical testing practices to test the integration among

the various platforms.

5 CONCLUSION
This article presents a novel development model coined Quantum-
Algorithms-as-a-Service (QAaaS) aiming to overcome the integra-

tion issues of traditional and quantum components. The proposed

model provides quantum algorithms as services so developers can

access them via traditional API invocations without knowing tech-

nical implementation details. We also include a research roadmap

to allow the design and implementation of a working prototype

and its evaluation.

The realization of this research agenda will represent only a first

step towards abstracting quantum computing out of the limitations

imposed by hardware providers. In the future, it will be possible

to realize a library to facilitate the usage of quantum computing

technologies.

ACKNOWLEDGEMENT
Fabio is supported by the Swiss National Science Foundation through

the SNF Project No. PZ00P2 186090 (TED). This work has been

also partially supported by the EMELIOT national research project,

which has been funded by the MUR under the PRIN 2020 program

(Contract 2020W3A5FY).

REFERENCES
[1] 2021. Q#: A Quantum Programming Language. https://qsharp.community.

Accessed: 2021-09-21.

[2] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello,

Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-

Franquis, Adrian Chen, Chun-Fu Chen, et al. 2019. Qiskit: An open-source

framework for quantum computing. Accessed on: Mar 16 (2019).
[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami

Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al.

2019. Quantum supremacy using a programmable superconducting processor.

Nature 574, 7779 (2019), 505–510.
[4] Adriano Barenco, Charles H Bennett, Richard Cleve, David PDiVincenzo, Norman

Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. 1995.

Elementary gates for quantum computation. Physical review A 52, 5 (1995), 3457.

[5] Manuel De Stefano, Fabiano Pecorelli, Dario Di Nucci, Fabio Palomba, and Andrea

De Lucia. 2022. Software Engineering for Quantum Programming: How Far Are

We? https://doi.org/10.48550/ARXIV.2203.16969

[6] Cirq Developers. 2021. Cirq. https://doi.org/10.5281/zenodo.4750446 See full list

of authors on Github: https://github .com/quantumlib/Cirq/graphs/contributors.

[7] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjangud C Narendra,

and Bo Hu. 2015. Everything as a service (XaaS) on the cloud: origins, current

and future trends. In 2015 IEEE 8th International Conference on Cloud Computing.
IEEE, 621–628.

[8] Richard P Feynman. 2017. Quantum mechanical computers. Between Quantum
and Cosmos (2017), 523–548.

[9] Sukhpal Singh Gill, Adarsh Kumar, Harvinder Singh, Manmeet Singh, Kamalpreet

Kaur, Muhammad Usman, and Rajkumar Buyya. 2022. Quantum computing:

A taxonomy, systematic review and future directions. Software: Practice and
Experience 52, 1 (2022), 66–114.

[10] Cláudio Gomes, Daniel Fortunato, João Paulo Fernandes, and Rui Abreu. 2020.

Off-the-shelf Components for Quantum Programming and Testing.. In Q-SET@
QCE. 14–19.

[11] Tony Hoare and Robin Milner. 2005. Grand challenges for computing research.

Comput. J. 48, 1 (2005), 49–52.
[12] Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Firas

Hamze, Neil Dickson, Richard Harris, Andrew J Berkley, Jan Johansson, Paul

Bunyk, et al. 2011. Quantum annealing with manufactured spins. Nature 473,
7346 (2011), 194–198.

[13] Arif Ali Khan, Aakash Ahmad, Muhammad Waseem, Peng Liang, Mahdi Fah-

mideh, Tommi Mikkonen, and Pekka Abrahamsson. 2022. Software Architec-

ture for Quantum Computing Systems-A Systematic Review. arXiv preprint
arXiv:2202.05505 (2022).

[14] Will Knight. 2018. Serious quantum computers are finally here. What are we

going to do with them. MIT Technology Review. Retrieved on October 30 (2018),
2018.

[15] Indika Kumara, Willem-Jan Van Den Heuvel, and Damian A Tamburri. 2021.

QSOC: Quantum service-oriented computing. In Symposium and Summer School
on Service-Oriented Computing. Springer, 52–63.

[16] Enrique Moguel, Javier Berrocal, José García-Alonso, and Juan Manuel Murillo.

2020. A Roadmap for Quantum Software Engineering: Applying the Lessons

Learned from the Classics.. In Q-SET@ QCE. 5–13.
[17] Leonie Mueck. 2017. Quantum software. Nature 549, 7671 (2017), 171–171.
[18] Mario Piattini, Guido Peterssen, Ricardo Pérez-Castillo, Jose Luis Hevia, Manuel A

Serrano, GuillermoHernández, Ignacio García Rodríguez de Guzmán, Claudio An-

drés Paradela, Macario Polo, Ezequiel Murina, et al. 2020. The Talavera Manifesto

for Quantum Software Engineering and Programming.. In QANSWER. 1–5.
[19] Mario Piattini, Manuel Serrano, Ricardo Perez-Castillo, Guido Petersen, and

Jose Luis Hevia. 2021. Toward a quantum software engineering. IT Professional
23, 1 (2021), 62–66.

[20] Benjamin Weder, Uwe Breitenbücher, Frank Leymann, and Karoline Wild. 2020.

Integrating quantum computing into workflow modeling and execution. In 2020
IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC).
IEEE, 279–291.

[21] Manuela Weigold, Johanna Barzen, Frank Leymann, and Marie Salm. 2021. Ex-

panding data encoding patterns for quantum algorithms. In 2021 IEEE 18th Inter-
national Conference on Software Architecture Companion (ICSA-C). IEEE, 95–101.

[22] Manuela Weigold, Johanna Barzen, Frank Leymann, and Daniel Vietz. 2021.

Patterns for Hybrid Quantum Algorithms. In Symposium and Summer School on
Service-Oriented Computing. Springer, 34–51.

[23] Zapata. 2020. Orquestra. https://www.zapatacomputing.com/orquestra-

platform/

[24] Jianjun Zhao. 2020. Quantum software engineering: Landscapes and horizons.

arXiv preprint arXiv:2007.07047 (2020).

https://qsharp.community
https://doi.org/10.48550/ARXIV.2203.16969
https://doi.org/10.5281/zenodo.4750446
https://www.zapatacomputing.com/orquestra-platform/
https://www.zapatacomputing.com/orquestra-platform/

	Abstract
	1 Introduction
	2 Quantum Providers Face to Face
	3 Towards Quantum-Algorithms-as-a-Service
	4 Roadmap
	5 Conclusion
	References

